Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Mol Life Sci ; 81(1): 15, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194116

RESUMEN

Although intracellular Ca2+ signals of oligodendroglia, the myelin-forming cells of the central nervous system, regulate vital cellular processes including myelination, few studies on oligodendroglia Ca2+ signal dynamics have been carried out and existing software solutions are not adapted to the analysis of the complex Ca2+ signal characteristics of these cells. Here, we provide a comprehensive solution to analyze oligodendroglia Ca2+ imaging data at the population and single-cell levels. We describe a new analytical pipeline containing two free, open source and cross-platform software programs, Occam and post-prOccam, that enable the fully automated analysis of one- and two-photon Ca2+ imaging datasets from oligodendroglia obtained by either ex vivo or in vivo Ca2+ imaging techniques. Easily configurable, our software solution is optimized to obtain unbiased results from large datasets acquired with different imaging techniques. Compared to other recent software, our solution proved to be fast, low memory demanding and faithful in the analysis of oligodendroglial Ca2+ signals in all tested imaging conditions. Our versatile and accessible Ca2+ imaging data analysis tool will facilitate the elucidation of Ca2+-mediated mechanisms in oligodendroglia. Its configurability should also ensure its suitability with new use cases such as other glial cell types or even cells outside the CNS.


Asunto(s)
Calcio , Oligodendroglía , Flujo de Trabajo , Vaina de Mielina , Neuroglía
3.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293155

RESUMEN

Background: In addition to show autonomous beating rhythmicity, the physiological functions of the heart present daily periodic oscillations. Notably the ventricular repolarization itself varies throughout the circadian cycle which was mainly related to the periodic expression of K + channels. However, the involvement of the L-type Ca 2+ channel (Ca V 1.2 encoded by Cacna1c gene) in these circadian variations remains elusive. Methods: We used a transgenic mouse model (PCa-luc) that expresses the luciferase reporter under the control of the cardiac Cacna1c promoter and analyzed promoter activity by bioluminescent imaging, qPCR, immunoblot, Chromatin immunoprecipitation assay (ChIP) and Ca V 1.2 activity. Results: Under normal 12:12h light-dark cycle, we observed in vivo a biphasic diurnal variation of promoter activities peaking at 9 and 19.5 Zeitgeber time (ZT). This was associated with a periodicity of Cacna1c mRNA levels preceding 24-h oscillations of Ca V 1.2 protein levels in ventricle (with a 1.5 h phase shift) but not in atrial heart tissues. The periodicity of promoter activities and Ca V 1.2 proteins, which correlated with biphasic oscillations of L-type Ca 2+ current conductance, persisted in isolated ventricular cardiomyocytes from PCa-Luc mice over the course of the 24-h cycle, suggesting an endogenous cardiac circadian regulation. Comparison of 24-h temporal patterns of clock gene expressions in ventricles and atrial tissues of the same mice revealed conserved circadian oscillations of the core clock genes except for the retinoid-related orphan receptor α gene (RORα), which remained constant throughout the course of a day in atrial tissues. In vitro we found that RORα is recruited to two specific regions on the Cacna1c promoter and that incubation with specific RORα inhibitor disrupted 24-h oscillations of ventricular promoter activities and Ca V 1.2 protein levels. Similar results were observed for pore forming subunits of the K + transient outward currents, K V 4.2 and K V 4.3. Conclusions: These findings raise the possibility that the RORα-dependent rhythmic regulation of cardiac Ca V 1.2 and K V 4.2/4.3 throughout the daily cycle may play an important role in physiopathology of heart function.

4.
Sci Rep ; 9(1): 6311, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-31004120

RESUMEN

Selective serotonin reuptake inhibitors are among the most prescribed antidepressants. Fluoxetine is the lead molecule which exerts its therapeutic effects, at least in part, by promoting neuroplasticity through increased brain-derived neurotrophic factor (BDNF)/tropomyosin-related receptor kinase B (TrkB) signalling. It is unclear however, to which extent the neuroplastic effects of fluoxetine are solely mediated by the inhibition of the serotonin transporter (5-HTT). To answer this question, the effects of fluoxetine on neuroplasticity were analysed in both wild type (WT) and 5-Htt knock-out (KO) mice. Using Western blotting and RT-qPCR approaches, we showed that fluoxetine 10 µM activated BDNF/TrkB signalling pathways in both CD1 and C57BL/6J mouse primary cortical neurons. Interestingly, effects on BDNF signalling were observed in primary cortical neurons from both 5-Htt WT and KO mice. In addition, a 3-week in vivo fluoxetine treatment (15 mg/kg/d; i.p.) increased the expression of plasticity genes in brains of both 5-Htt WT and KO mice, and tended to equally enhance hippocampal cell proliferation in both genotypes, without reaching significance. Our results further suggest that fluoxetine-induced neuroplasticity does not solely depend on 5-HTT blockade, but might rely, at least in part, on 5-HTT-independent direct activation of TrkB.


Asunto(s)
Fluoxetina/farmacología , Hipocampo/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Plasticidad Neuronal/genética , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Transducción de Señal/genética
6.
Transl Psychiatry ; 9(1): 100, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792491

RESUMEN

Post-traumatic stress disorder (PTSD) is a trauma- and stress-related disorder with dysregulated fear responses and neurobiological impairments, notably at neurotrophic and inflammation levels. Understanding the mechanisms underlying this disease is crucial to develop PTSD models that meet behavioral and neurobiological validity criteria as well as innovative therapeutic approaches. Serotonin 2C receptors (5-HT2CR) are known for their important role in anxiety, and mice having only the fully edited VGV isoform of 5-HT2CR, which thereby overexpressed brain 5-HT2CR, are of special interest to study PTSD predisposition. Innate and conditioned fear-related behaviors were assessed in VGV and wild-type mice. mRNA expression of brain-derived neurotrophic factor (BDNF), tissue-plasminogen activator (tPA), and pro-inflammatory cytokines (IL-6, IL-1ß, and calcineurin) were measured by qRT-PCR. The effect of acute and chronic paroxetine was evaluated on both behavior and gene expression. VGV mice displayed greater fear expression, extensive fear extinction deficits, and fear generalization. Paroxetine restored fear extinction in VGV mice when administered acutely and decreased innate fear and fear generalization when administered chronically. In parallel, Bdnf, tPA, and pro-inflammatory cytokines mRNA levels were dysregulated in VGV mice. Bdnf and tPA mRNA expression was decreased in the hippocampus but increased in the amygdala, and chronic paroxetine normalized Bdnf mRNA levels both in the amygdala and the hippocampus. Amygdalar calcineurin mRNA level in VGV mice was also normalized by chronic paroxetine. VGV-transgenic mice displayed behavioral and neurobiological features that could be accessory to the investigation of PTSD and its treatment. Furthermore, these data point out to the role of 5-HT2CR in neuroplasticity and neuroinflammation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas/metabolismo , Paroxetina/farmacología , Edición de ARN , Receptor de Serotonina 5-HT2C/metabolismo , Trastornos por Estrés Postraumático/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Ansiedad/genética , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/genética , Modelos Animales de Enfermedad , Miedo , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/genética , Receptor de Serotonina 5-HT2C/genética , Transducción de Señal , Trastornos por Estrés Postraumático/tratamiento farmacológico
7.
EMBO J ; 37(8)2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29459435

RESUMEN

Cholesterol is a major lipid component of the mammalian plasma membrane. While much is known about its metabolism, its transport, and its role in atherosclerotic vascular disease, less is known about its role in neuronal pathophysiology. This study reveals an unexpected function of cholesterol in controlling pain transmission. We show that inflammation lowers cholesterol content in skin tissue and sensory DRG culture. Pharmacological depletion of cellular cholesterol entails sensitization of nociceptive neurons and promotes mechanical and thermal hyperalgesia through the activation of voltage-gated Nav1.9 channels. Inflammatory mediators enhance the production of reactive oxygen species and induce partitioning of Nav1.9 channels from cholesterol-rich lipid rafts to cholesterol-poor non-raft regions of the membrane. Low-cholesterol environment enhances voltage-dependent activation of Nav1.9 channels leading to enhanced neuronal excitability, whereas cholesterol replenishment reversed these effects. Consistently, we show that transcutaneous delivery of cholesterol alleviates hypersensitivity in animal models of acute and chronic inflammatory pain. In conclusion, our data establish that membrane cholesterol is a modulator of pain transmission and shed a new light on the relationship between cholesterol homeostasis, inflammation, and pain.


Asunto(s)
Membrana Celular/fisiología , Colesterol/fisiología , Inflamación/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.9/fisiología , Dolor/fisiopatología , Animales , Ganglios Espinales/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nociceptores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...